Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil.

Identifieur interne : 000140 ( Main/Exploration ); précédent : 000139; suivant : 000141

Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil.

Auteurs : Andriy Sheremet [Canada] ; Gareth M. Jones [Canada] ; Jessica Jarett [États-Unis] ; Robert M. Bowers [États-Unis] ; Isaac Bedard [Canada] ; Cassandra Culham [Canada] ; Emiley A. Eloe-Fadrosh [États-Unis] ; Natalia Ivanova [États-Unis] ; Rex R. Malmstrom [États-Unis] ; Stephen E. Grasby [Canada] ; Tanja Woyke [États-Unis] ; Peter F. Dunfield [Canada]

Source :

RBID : pubmed:32372527

Abstract

Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 108 cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.

DOI: 10.1111/1462-2920.15054
PubMed: 32372527


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil.</title>
<author>
<name sortKey="Sheremet, Andriy" sort="Sheremet, Andriy" uniqKey="Sheremet A" first="Andriy" last="Sheremet">Andriy Sheremet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, Gareth M" sort="Jones, Gareth M" uniqKey="Jones G" first="Gareth M" last="Jones">Gareth M. Jones</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jarett, Jessica" sort="Jarett, Jessica" uniqKey="Jarett J" first="Jessica" last="Jarett">Jessica Jarett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bowers, Robert M" sort="Bowers, Robert M" uniqKey="Bowers R" first="Robert M" last="Bowers">Robert M. Bowers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bedard, Isaac" sort="Bedard, Isaac" uniqKey="Bedard I" first="Isaac" last="Bedard">Isaac Bedard</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Culham, Cassandra" sort="Culham, Cassandra" uniqKey="Culham C" first="Cassandra" last="Culham">Cassandra Culham</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eloe Fadrosh, Emiley A" sort="Eloe Fadrosh, Emiley A" uniqKey="Eloe Fadrosh E" first="Emiley A" last="Eloe-Fadrosh">Emiley A. Eloe-Fadrosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivanova, Natalia" sort="Ivanova, Natalia" uniqKey="Ivanova N" first="Natalia" last="Ivanova">Natalia Ivanova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Malmstrom, Rex R" sort="Malmstrom, Rex R" uniqKey="Malmstrom R" first="Rex R" last="Malmstrom">Rex R. Malmstrom</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grasby, Stephen E" sort="Grasby, Stephen E" uniqKey="Grasby S" first="Stephen E" last="Grasby">Stephen E. Grasby</name>
<affiliation wicri:level="1">
<nlm:affiliation>Geological Survey of Canada, Calgary, Alberta, T2L 2A7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Geological Survey of Canada, Calgary, Alberta, T2L 2A7</wicri:regionArea>
<wicri:noRegion>T2L 2A7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Woyke, Tanja" sort="Woyke, Tanja" uniqKey="Woyke T" first="Tanja" last="Woyke">Tanja Woyke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dunfield, Peter F" sort="Dunfield, Peter F" uniqKey="Dunfield P" first="Peter F" last="Dunfield">Peter F. Dunfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32372527</idno>
<idno type="pmid">32372527</idno>
<idno type="doi">10.1111/1462-2920.15054</idno>
<idno type="wicri:Area/Main/Corpus">000097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000097</idno>
<idno type="wicri:Area/Main/Curation">000097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000097</idno>
<idno type="wicri:Area/Main/Exploration">000097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil.</title>
<author>
<name sortKey="Sheremet, Andriy" sort="Sheremet, Andriy" uniqKey="Sheremet A" first="Andriy" last="Sheremet">Andriy Sheremet</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, Gareth M" sort="Jones, Gareth M" uniqKey="Jones G" first="Gareth M" last="Jones">Gareth M. Jones</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jarett, Jessica" sort="Jarett, Jessica" uniqKey="Jarett J" first="Jessica" last="Jarett">Jessica Jarett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bowers, Robert M" sort="Bowers, Robert M" uniqKey="Bowers R" first="Robert M" last="Bowers">Robert M. Bowers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bedard, Isaac" sort="Bedard, Isaac" uniqKey="Bedard I" first="Isaac" last="Bedard">Isaac Bedard</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Culham, Cassandra" sort="Culham, Cassandra" uniqKey="Culham C" first="Cassandra" last="Culham">Cassandra Culham</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eloe Fadrosh, Emiley A" sort="Eloe Fadrosh, Emiley A" uniqKey="Eloe Fadrosh E" first="Emiley A" last="Eloe-Fadrosh">Emiley A. Eloe-Fadrosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivanova, Natalia" sort="Ivanova, Natalia" uniqKey="Ivanova N" first="Natalia" last="Ivanova">Natalia Ivanova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Malmstrom, Rex R" sort="Malmstrom, Rex R" uniqKey="Malmstrom R" first="Rex R" last="Malmstrom">Rex R. Malmstrom</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grasby, Stephen E" sort="Grasby, Stephen E" uniqKey="Grasby S" first="Stephen E" last="Grasby">Stephen E. Grasby</name>
<affiliation wicri:level="1">
<nlm:affiliation>Geological Survey of Canada, Calgary, Alberta, T2L 2A7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Geological Survey of Canada, Calgary, Alberta, T2L 2A7</wicri:regionArea>
<wicri:noRegion>T2L 2A7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Woyke, Tanja" sort="Woyke, Tanja" uniqKey="Woyke T" first="Tanja" last="Woyke">Tanja Woyke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598</wicri:regionArea>
<wicri:noRegion>94598</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dunfield, Peter F" sort="Dunfield, Peter F" uniqKey="Dunfield P" first="Peter F" last="Dunfield">Peter F. Dunfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental microbiology</title>
<idno type="eISSN">1462-2920</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 10
<sup>8</sup>
cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32372527</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-2920</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Environmental microbiology</Title>
<ISOAbbreviation>Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil.</ArticleTitle>
<Pagination>
<MedlinePgn>3143-3157</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1462-2920.15054</ELocationID>
<Abstract>
<AbstractText>Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 10
<sup>8</sup>
cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.</AbstractText>
<CopyrightInformation>© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sheremet</LastName>
<ForeName>Andriy</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4530-0678</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>Gareth M</ForeName>
<Initials>GM</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3627-9440</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jarett</LastName>
<ForeName>Jessica</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8602-7348</Identifier>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bowers</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0028-0407</Identifier>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bedard</LastName>
<ForeName>Isaac</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3625-2464</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Culham</LastName>
<ForeName>Cassandra</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eloe-Fadrosh</LastName>
<ForeName>Emiley A</ForeName>
<Initials>EA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8162-1276</Identifier>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ivanova</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5802-9485</Identifier>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Malmstrom</LastName>
<ForeName>Rex R</ForeName>
<Initials>RR</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4758-7369</Identifier>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grasby</LastName>
<ForeName>Stephen E</ForeName>
<Initials>SE</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3910-4443</Identifier>
<AffiliationInfo>
<Affiliation>Geological Survey of Canada, Calgary, Alberta, T2L 2A7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Woyke</LastName>
<ForeName>Tanja</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9485-5637</Identifier>
<AffiliationInfo>
<Affiliation>Department of Energy Joint Genome Institute, Walnut Creek CA, 94598, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dunfield</LastName>
<ForeName>Peter F</ForeName>
<Initials>PF</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9319-4697</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Calgary, 2500 University Dr. NW Calgary, Alberta, T2N 1N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>DOE Office of Science</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2019-06265</GrantID>
<Agency>Natural Sciences and Engineering Research Council of Canada</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Environ Microbiol</MedlineTA>
<NlmUniqueID>100883692</NlmUniqueID>
<ISSNLinking>1462-2912</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32372527</ArticleId>
<ArticleId IdType="doi">10.1111/1462-2920.15054</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Xu, Z.Z., et al. (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2: e00191-16.</Citation>
</Reference>
<Reference>
<Citation>Barabote, R.D., Xie, G., Leu, D.H., Normand, P., Necsulea, A., Daubin, V., et al. (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19: 1033-1043.</Citation>
</Reference>
<Reference>
<Citation>Barco, R.A., Emerson, D., Sylvan, J.B., Orcutt, B.N., Meyers, M.E.J., Ramírez, G.A., et al. (2015) New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol 81: 5927-5937.</Citation>
</Reference>
<Reference>
<Citation>Bird, L.J., Saraiva, I.H., Park, S., Calçada, E.O., Salgueiro, C.A., Nitschke, W., et al. (2014) Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1. J Bacteriol 196: 850-858.</Citation>
</Reference>
<Reference>
<Citation>Blondel, V.D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008: P10008.</Citation>
</Reference>
<Reference>
<Citation>Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., et al. (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 6: 90.</Citation>
</Reference>
<Reference>
<Citation>Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37: 852-857.</Citation>
</Reference>
<Reference>
<Citation>Bowers, R.M., Kyrpides, N.C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T.B.K., et al. (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35: 725-731.</Citation>
</Reference>
<Reference>
<Citation>Bragina, A., Berg, C., and Berg, G. (2015) The core microbiome bonds the alpine bog vegetation to a transkingdom metacommunity. Mol Ecol 24: 4795-4807.</Citation>
</Reference>
<Reference>
<Citation>Camanocha, A., and Dewhirst, F.E. (2014) Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 phyla/candidate divisions. J Oral Microbiol 6: 25468.</Citation>
</Reference>
<Reference>
<Citation>Chen, I.-M.A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., et al. (2019) IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47: D666-D677.</Citation>
</Reference>
<Reference>
<Citation>Costello, E.K., Halloy, S.R.P., Reed, S.C., Sowell, P., and Schmidt, S.K. (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa volcano, Puna de Atacama, Andes. Appl Env Microbiol 75: 735-747.</Citation>
</Reference>
<Reference>
<Citation>Csardi, G., and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal Complex Syst 1695: 1-9.</Citation>
</Reference>
<Reference>
<Citation>Dewhirst, F.E., Klein, E.A., Thompson, E.C., Blanton, J.M., Chen, T., Milella, L., et al. (2012) The canine oral microbiome. PLoS One 7: e36067.</Citation>
</Reference>
<Reference>
<Citation>Dunfield, P.F., Tamas, I., Lee, K.C., Morgan, X.C., McDonald, I.R., and Stott, M.B. (2012) Electing a candidate: a speculative history of the bacterial phylum OP10. Environ Microbiol 14: 3069-3080.</Citation>
</Reference>
<Reference>
<Citation>Eichorst, S.A., Breznak, J.A., and Schmidt, T.M. (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73: 2708-2717.</Citation>
</Reference>
<Reference>
<Citation>Eloe-Fadrosh, E.A., Paez-Espino, D., Jarett, J., Dunfield, P.F., Hedlund, B.P., Dekas, A.E., et al. (2016) Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 7: 10476.</Citation>
</Reference>
<Reference>
<Citation>van Everdingen, R.O. (1970) The paint pots, Kootenay National Park, British Columbia-acid spring water with extreme heavy-metal content. Can J Earth Sci 7: 831-852.</Citation>
</Reference>
<Reference>
<Citation>Grasby, S.E., Richards, B.C., Sharp, C.E., Brady, A.L., Jones, G.M., and Dunfield, P.F. (2013) The paint pots, Kootenay National Park, Canada - a natural acid spring analogue for Mars. Can J Earth Sci 50: 94-108.</Citation>
</Reference>
<Reference>
<Citation>Hardy, O.J. (2008) Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. J Ecol 96: 914-926.</Citation>
</Reference>
<Reference>
<Citation>Hedrich, S., Schlömann, M., and Johnson, D.B. (2011) The iron-oxidizing proteobacteria. Microbiol Read Engl 157: 1551-1564.</Citation>
</Reference>
<Reference>
<Citation>Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor, M., and Lear, G. (2017) Bacteria as emerging indicators of soil condition. Appl Environ Microbiol 83: e02826-e02816.</Citation>
</Reference>
<Reference>
<Citation>Holland-Moritz, H., Stuart, J., Lewis, L.R., Miller, S., Mack, M.C., McDaniel, S.F., and Fierer, N. (2018) Novel bacterial lineages associated with boreal moss species. Environ Microbiol 20: 2625-2638.</Citation>
</Reference>
<Reference>
<Citation>Huelsenbeck, J.P., and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinforma Oxf Engl 17: 754-755.</Citation>
</Reference>
<Reference>
<Citation>Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J., Castelle, C.J., et al. (2016) A new view of the tree of life. Nat Microbiol : 16048.1: 1-6.</Citation>
</Reference>
<Reference>
<Citation>Huntemann, M., Ivanova, N.N., Mavromatis, K., Tripp, H.J., Paez-Espino, D., Palaniappan, K., et al. (2015) The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v. 4). Stand Genomic Sci 10: 1.</Citation>
</Reference>
<Reference>
<Citation>Huntemann, M., Ivanova, N.N., Mavromatis, K., Tripp, H.J., Paez-Espino, D., Tennessen, K., et al. (2016) The standard operating procedure of the DOE-JGI metagenome annotation pipeline (MAP v.4). Stand Genomic Sci 11: 17.</Citation>
</Reference>
<Reference>
<Citation>Jacomy, M., Venturini, T., Heymann, S., and Bastian, M. (2014) ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9: e98679.</Citation>
</Reference>
<Reference>
<Citation>Ji, M., van Dorst, J., Bissett, A., Brown, M.V., Palmer, A.S., Snape, I., et al. (2016) Microbial diversity at Mitchell peninsula, eastern Antarctica: a potential biodiversity “hotspot”. Polar Biol 39: 237-249.</Citation>
</Reference>
<Reference>
<Citation>Ji, M., Greening, C., Vanwonterghem, I., Carere, C.R., Bay, S.K., Steen, J.A., et al. (2017) Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552: 400-403.</Citation>
</Reference>
<Reference>
<Citation>Johnson, D.B., Bacelar-Nicolau, P., Okibe, N., Thomas, A., and Hallberg, K.B. (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59: 1082-1089.</Citation>
</Reference>
<Reference>
<Citation>Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3: e1165.</Citation>
</Reference>
<Reference>
<Citation>Kibbe, W.A. (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35: W43-W46.</Citation>
</Reference>
<Reference>
<Citation>Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., and Kuramae, E.E. (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7: 744.</Citation>
</Reference>
<Reference>
<Citation>King, C.E., and King, G.M. (2014) Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol 64: 1244-1251.</Citation>
</Reference>
<Reference>
<Citation>Knief, C., Lipski, A., and Dunfield, P.F. (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69: 6703-6714.</Citation>
</Reference>
<Reference>
<Citation>Koch, I.H., Gich, F., Dunfield, P.F., and Overmann, J. (2008) Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58: 1114-1122.</Citation>
</Reference>
<Reference>
<Citation>Konstantinidis, K.T., and Tiedje, J.M. (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187: 6258-6264.</Citation>
</Reference>
<Reference>
<Citation>Kuznetsov, S.I., Dubinina, G.A., and Lapteva, N.A. (1979) Biology of oligotrophic bacteria. Annu Rev Microbiol 33: 377-387.</Citation>
</Reference>
<Reference>
<Citation>Legendre, P., and Legendre, L. (2012) Numerical Ecology, 3rd ed. Amsterdam: Elsevier.</Citation>
</Reference>
<Reference>
<Citation>Lin, X., Kennedy, D., Fredrickson, J., Bjornstad, B., and Konopka, A. (2012) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford site. Environ Microbiol 14: 414-425.</Citation>
</Reference>
<Reference>
<Citation>Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhu, K., & et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.</Citation>
</Reference>
<Reference>
<Citation>McAllister, S.M., Moore, R.M., Gartman, A., Luther, G.W., Emerson, D., and Chan, C.S. (2019) The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol Ecol 95: 1-18.</Citation>
</Reference>
<Reference>
<Citation>McAllister, S.M., Polson, S.W., Butterfield, D.A., Glazer, B.T., Sylvan, J.B., and Chan, C.S. (2020) Validating the cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems 5: 1-17.</Citation>
</Reference>
<Reference>
<Citation>Nett, M., and König, G.M. (2007) The chemistry of gliding bacteria. Nat Prod Rep 24: 1245-1261.</Citation>
</Reference>
<Reference>
<Citation>Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268-274.</Citation>
</Reference>
<Reference>
<Citation>Nogales, B., Moore, E.R., Llobet-Brossa, E., Rossello-Mora, R., Amann, R., and Timmis, K.N. (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67: 1874-1884.</Citation>
</Reference>
<Reference>
<Citation>Norris, P.R., Laigle, L., and Slade, S. (2018) Cytochromes in anaerobic growth of Acidithiobacillus ferrooxidans. Microbiology 164: 383-394.</Citation>
</Reference>
<Reference>
<Citation>Park, J.-S., Yabe, S., Shin-ya, K., Nishiyama, M., and Kuzuyama, T. (2015) New 2-(1'H-indole-3′-carbonyl)-thiazoles derived from the thermophilic bacterium Thermosporothrix hazakensis SK20-1(T). J Antibiot (Tokyo) 68: 60-62.</Citation>
</Reference>
<Reference>
<Citation>Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., and Hugenholtz, P. (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36: 996-1004.</Citation>
</Reference>
<Reference>
<Citation>Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25: 1043-1055.</Citation>
</Reference>
<Reference>
<Citation>Parks, D.H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B.J., Evans, P.N., et al. (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2: 1533-1542.</Citation>
</Reference>
<Reference>
<Citation>Pascual, J., Blanco, S., García-López, M., García-Salamanca, A., Bursakov, S.A., Genilloud, O., et al. (2016) Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One 11: e0146558.</Citation>
</Reference>
<Reference>
<Citation>Pati, A., Labutti, K., Pukall, R., Nolan, M., Glavina Del Rio, T., Tice, H., et al. (2010) Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022). Stand Genomic Sci 2: 49-56.</Citation>
</Reference>
<Reference>
<Citation>Podar, M., Anderson, I., Makarova, K.S., Elkins, J.G., Ivanova, N., Wall, M.A., et al. (2008) A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 9: R158.</Citation>
</Reference>
<Reference>
<Citation>Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.</Citation>
</Reference>
<Reference>
<Citation>Richter, M., and Rosselló-Móra, R. (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106: 19126-19131.</Citation>
</Reference>
<Reference>
<Citation>Rinke, C., Lee, J., Nath, N., Goudeau, D., Thompson, B., Poulton, N., et al. (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 9: 1038-1048.</Citation>
</Reference>
<Reference>
<Citation>Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.-F., et al. (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431-437.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez-R, L.M., Gunturu, S., Harvey, W.T., Rosselló-Mora, R., Tiedje, J.M., Cole, J.R., and Konstantinidis, K.T. (2018) The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of archaea and bacteria at the whole genome level. Nucleic Acids Res 46: W282-W288.</Citation>
</Reference>
<Reference>
<Citation>Rodriguez-R, L.M., and Konstantinidis, K.T. (2014) Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Mag 9: 111-118.</Citation>
</Reference>
<Reference>
<Citation>Ruhl, I.A., Grasby, S.E., Haupt, E.S., and Dunfield, P.F. (2018) Analysis of microbial communities in natural halite springs reveals a domain-dependent relationship of species diversity to osmotic stress: salinity versus microbial diversity. Environ Microbiol Rep 10: 695-703.</Citation>
</Reference>
<Reference>
<Citation>Sako, Y., Nakagawa, S., Takai, K., and Horikoshi, K. (2003) Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53: 59-65.</Citation>
</Reference>
<Reference>
<Citation>Stibal, M., Schostag, M., Cameron, K.A., Hansen, L.H., Chandler, D.M., Wadham, J.L., and Jacobsen, C.S. (2015) Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ Microbiol Rep 7: 293-300.</Citation>
</Reference>
<Reference>
<Citation>Stott, M.B., Crowe, M.A., Mountain, B.W., Smirnova, A.V., Hou, S., Alam, M., and Dunfield, P.F. (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10: 2030-2041.</Citation>
</Reference>
<Reference>
<Citation>Schauer, K., Rodionov, D.A., and de Reuse, H. (2008) New substrates for TonB-dependent transport: do we only see the “tip of the iceberg”?. Trends Biochem Sci 33: 330-338.</Citation>
</Reference>
<Reference>
<Citation>Taş, N., Prestat, E., McFarland, J.W., Wickland, K.P., Knight, R., Berhe, A.A., et al. (2014) Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8: 1904-1919.</Citation>
</Reference>
<Reference>
<Citation>Trexler, R., Solomon, C., Brislawn, C.J., Wright, J.R., Rosenberger, A., McClure, E.E., et al. (2014) Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in northwestern Pennsylvania. Front Microbiol 5: 522.</Citation>
</Reference>
<Reference>
<Citation>Urios, L., Agogué, H., Lesongeur, F., Stackebrandt, E., and Lebaron, P. (2006) Balneola vulgaris gen. nov., sp. nov., a member of the phylum Bacteroidetes from the north-western Mediterranean Sea. Int J Syst Evol Microbiol 56: 1883-1887.</Citation>
</Reference>
<Reference>
<Citation>Wang, X., Sharp, C.E., Jones, G.M., Grasby, S.E., Brady, A.L., and Dunfield, P.F. (2015) Stable-isotope probing identifies uncultured planctomycetes as primary degraders of a complex heteropolysaccharide in soil. Appl Environ Microbiol 81: 4607-4615.</Citation>
</Reference>
<Reference>
<Citation>Ward, L.M., Cardona, T., and Holland-Moritz, H. (2019) Evolutionary implications of anoxygenic phototrophy in the bacterial phylum candidatus Eremiobacterota (WPS-2). Front Microbiol 10: 1658.</Citation>
</Reference>
<Reference>
<Citation>Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho, P.M., Wu, M., et al. (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75: 2046-2056.</Citation>
</Reference>
<Reference>
<Citation>Woodcroft, B.J., Singleton, C.M., Boyd, J.A., Evans, P.N., Emerson, J.B., Zayed, A.A.F., et al. (2018) Genome-centric view of carbon processing in thawing permafrost. Nature 560: 49-54.</Citation>
</Reference>
<Reference>
<Citation>Wrighton, K.C., Thomas, B.C., Sharon, I., Miller, C.S., Castelle, C.J., VerBerkmoes, N.C., et al. (2012) Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337: 1661-1665.</Citation>
</Reference>
<Reference>
<Citation>Wu, D., Raymond, J., Wu, M., Chatterji, S., Ren, Q., Graham, J.E., et al. (2009) Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One 4: e4207.</Citation>
</Reference>
<Reference>
<Citation>Wu, X., Holmfeldt, K., Hubalek, V., Lundin, D., Åström, M., Bertilsson, S., and Dopson, M. (2016) Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J 10: 1192-1203.</Citation>
</Reference>
<Reference>
<Citation>Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.-H., et al. (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12: 635-645.</Citation>
</Reference>
<Reference>
<Citation>Yu, G., Smith, D.K., Zhu, H., Guan, Y., and Lam, T.T.-Y. (2017) Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8: 28-36.</Citation>
</Reference>
<Reference>
<Citation>Zarilla, K.A., and Perry, J.J. (1984) Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137: 286-290.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Alberta</li>
</region>
<settlement>
<li>Calgary</li>
</settlement>
<orgName>
<li>Université de Calgary</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Alberta">
<name sortKey="Sheremet, Andriy" sort="Sheremet, Andriy" uniqKey="Sheremet A" first="Andriy" last="Sheremet">Andriy Sheremet</name>
</region>
<name sortKey="Bedard, Isaac" sort="Bedard, Isaac" uniqKey="Bedard I" first="Isaac" last="Bedard">Isaac Bedard</name>
<name sortKey="Culham, Cassandra" sort="Culham, Cassandra" uniqKey="Culham C" first="Cassandra" last="Culham">Cassandra Culham</name>
<name sortKey="Dunfield, Peter F" sort="Dunfield, Peter F" uniqKey="Dunfield P" first="Peter F" last="Dunfield">Peter F. Dunfield</name>
<name sortKey="Grasby, Stephen E" sort="Grasby, Stephen E" uniqKey="Grasby S" first="Stephen E" last="Grasby">Stephen E. Grasby</name>
<name sortKey="Jones, Gareth M" sort="Jones, Gareth M" uniqKey="Jones G" first="Gareth M" last="Jones">Gareth M. Jones</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Jarett, Jessica" sort="Jarett, Jessica" uniqKey="Jarett J" first="Jessica" last="Jarett">Jessica Jarett</name>
</noRegion>
<name sortKey="Bowers, Robert M" sort="Bowers, Robert M" uniqKey="Bowers R" first="Robert M" last="Bowers">Robert M. Bowers</name>
<name sortKey="Eloe Fadrosh, Emiley A" sort="Eloe Fadrosh, Emiley A" uniqKey="Eloe Fadrosh E" first="Emiley A" last="Eloe-Fadrosh">Emiley A. Eloe-Fadrosh</name>
<name sortKey="Ivanova, Natalia" sort="Ivanova, Natalia" uniqKey="Ivanova N" first="Natalia" last="Ivanova">Natalia Ivanova</name>
<name sortKey="Malmstrom, Rex R" sort="Malmstrom, Rex R" uniqKey="Malmstrom R" first="Rex R" last="Malmstrom">Rex R. Malmstrom</name>
<name sortKey="Woyke, Tanja" sort="Woyke, Tanja" uniqKey="Woyke T" first="Tanja" last="Woyke">Tanja Woyke</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000140 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000140 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32372527
   |texte=   Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32372527" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020